夜间福利网站,免费动漫av,一级做a爰片久久毛片免费陪,夜夜骑首页,黄色毛片视频,插插插操操操,综合av色

等腰三角形的教案設計

時間:2025-09-17 15:58:03 教案

等腰三角形的教案設計

  教學目標:

等腰三角形的教案設計

  知識技能

  了解等腰三角形的性質,掌握等腰三角形的性質定理及推論,會用定理及推論解決簡單問題.

  數學思考

  培養(yǎng)學生探究思維、邏輯思維能力,探索引輔助線的規(guī)律.

  情感態(tài)度與價值觀

  滲透"實踐--理論--實踐"的辯證唯物主義思想,培養(yǎng)探究分析數學知識方法的興趣,養(yǎng)成踏實細致、嚴謹科學的學習習慣.

  教學重點與難點

  重點:理解等腰三角形的性質定理、推論,并能用它們解決簡單的問題.

  難點:引輔助線證明定理和推論1的應用.

  教學過程與流程設計

  引導性材料:

  1.學生把等腰三角形的兩腰疊在一起,發(fā)現它的兩個底角重合,這說明等腰三角形具有什么性質?(等腰三角形的兩個底角相等)(演示疊合過程)

  2.教師用等腰三角形紙片演示兩腰疊合,再把紙片展開.

  提問:你能發(fā)現等腰三角形還有什么特性嗎?

 。ㄒ胝n題,明確目標)(顯示教學目標)

  教學設計:

  問題1:怎樣來證明“等腰三角形的兩個底角相等”呢?

  已知:如圖,△abc中,ab=ac.

  求證:∠b=∠c.

 。ǚ椒1)證明:作頂角的平分線ad.

  在△bad和△cad中.

  ab=ac (已知)

  ∠1=∠2 (輔助線作法)

  ad=ad (公共邊)

  ∴△bad≌△cad(sas)

  ∴∠b=∠c(全等三角形的對應角相等)

  問題2:上述命題還有哪些證法?

  方法2:作底邊bc上的高ad. (證明過程由學生口述)

  方法3:作底邊bc上的中線ad.(證明過程由學生口述)

 。ㄑ菔荆旱妊切蔚男再|定理 等腰三角形的兩個底角相等

  (簡寫成“等邊對等角”)

  觀察上述三種方法,思考如下問題:

 。1)在等腰△abc中,如果ad是頂角的平分線,那么ad是否平分底邊?是否垂直于底邊?

 。2)在等腰△abc中,如果ad是底邊上的高,那么ad是否平分頂角?是否平分底邊?

  (3)在等腰△abc中,如果ad是底邊上的中線,那么ad是否平分頂角?是否垂直于底邊?

  推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊.

 。ǖ妊切蔚捻斀瞧椒志、底邊上中線、底邊上的高互相重合.)

  練習:填空,在△abc中,

 。1)∵ab=ac,ad⊥bc,

  ∴∠ =∠ , = .

 。2)∵ab=ac,ad是中線,

  ∴ ⊥ ,∠ =∠ .

 。3)∵ab=ac,ad是角平分線,

  ∴ ⊥ , = .

  問題2:等邊三角形是特殊的等腰三角形,除具有等腰三角形的性質外,還有特殊的性質嗎?

  推論2:等邊三角形的各角都相等,并且每一個角都等于60°.(學生完成證明)

  已知:如圖,△abc中,ab=ac=bc.

  求證:∠a=∠b=∠c=60°

  證明:∵ ab=ac,

  ∴∠b=∠c(等邊對等角),

  ∵ac=bc,

  ∴∠a=∠b(等邊對等角),

  ∴∠a=∠b=∠c,

【等腰三角形的教案設計】相關文章:

等腰三角形教案設計12-26

《等腰三角形》教學設計12-04

等腰三角形教案(通用10篇)11-04

檢閱教案設計02-10

《人生》的教案設計03-08

《HotSummer》教案設計02-01

《夜空》教案設計02-28

精選教案設計思路08-13

《社戲》教案設計08-10